# Battery-Free Handheld Game

Group 18 (sddec21-18): John Brose, Jake Larimore, Franklin Bates, Daniel Lamar, Shivam Vashi

Advisor/Client: Henry Duwe

### **Problem Statement**

- Batteries can only hold a limited amount of energy
- Batteries need to be recharged and disposed of
- Batteries can take up significant space in a device
- Our device is a proof of concept to further knowledge and show capabilities of a battery-free system

### **Functional Requirements**

- Only use energy generated from user interaction
- Energy harvesting incorporated into gameplay
- Device supports some multiplayer functionality
- The device shall show a low power screen when it is running out of battery, telling the user to energy harvest.
- The game shall run through at least one room challenge state after energy harvesting.

## Non-functional Requirements

- The game should be reasonably intuitive to pick up and play
- The game should go through at least one state change after energy harvesting
- The energy harvesting techniques should not physically strain the user

### Constraints

- The user must individually produce enough power to match or exceed the power demands of the game.
- The device must be produced at a reasonable cost of under \$100.
- The device must be successfully designed and built within 26 weeks.
- The operating environment must be acceptable to the integrated hardware.
- The device must be unique from any other battery-free gaming devices available.

## Market Survey

- Battery-Free Game Boy
  - Northwestern University and the Delft University of Technology (TU Delft) September 2020
  - Battery-Free
  - Uses solar panels and kinetic button harvesters
- What Makes Ours Unique
  - Soley uses human input to generate power
  - Incorporates energy harvesting into gameplay interaction



#### **Conceptual Sketch**



### Resource/Cost Estimate

| 200x200, 1.54" E-ink Display | \$20.50 | 1 | \$20.50 |
|------------------------------|---------|---|---------|
| Kinetic Button Harvester     | \$11.15 | 4 | \$44.60 |
| Mini Motor Generator         | \$9.99  | 1 | \$9.99  |
| BQ25504 Boost Converter      | \$4.70  | 1 | \$4.70  |
| TPS610995DRV Boost Converter | \$1.84  | 1 | \$1.84  |
| MSP430 Dev Board             | \$20.39 | 1 | \$20.39 |
| TOTAL                        |         |   | \$82.68 |

## Project Milestones & Schedule

| WEEK                               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
|------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|
| Project Selection                  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Game Idea                          |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Research                           |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Specify Parts                      |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Order Parts                        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Energy Harvesting Detection Design |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Measure Part Specs                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Graphical User Interface Design    |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| E-ink Interface design             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Design Power System                |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Final Design Document              |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Multi-Device Communication Desgin  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Presentation                       |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Test Power System with Simulation  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Team Website                       |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Button & RPM Firmware Design       |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| EH Detection Testing               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Room Challanges Design             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    | لمص |    |    |    |    |    |    |    |    |    |
| GUI Testing                        |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Make PCB                           |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Environment Generation Design      |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Environment Generation Testing     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Assemble Final Product             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Multiplayer Interface Design       |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| User Input Detection Testing       |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Room Challanges Testing            |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Test Final Product                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Multiplayer Interface Testing      |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Multi-Device Communication Testing |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Project Poster                     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |
| Final Presentation                 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |

# **Functional Diagram**



# **Energy Harvesting - Production**



Mini Motor Generator

- Full-wave 3-phase rectification
- Smoothing capacitor



Kinetic Button Harvester

- Full-wave rectification
- Smoothing capacitor

# Energy Harvesting - Storage/Supply



#### BQ25504 - Energy Harvester Controller

- Safely charges/discharges supercapacitor
- Bucks/Boosts input ranging from 0.13V 5V
- Maximum of 3.3V on supercapacitor



#### TPS610994 - Boost Converter

- Ultra-Low quiescent current
- Boosts full range of supercapacitor
- Boost to constant 3.3V

#### High Level Software Design:

- Dungeon crawler gameplay
- Splash Screen with choice of instruction
- Room selection gives choice of three room challenges
- Choice of multiplayer or singleplayer boss fights
- Endless Loop



## Multiplayer Software Design



# Potential Risks & Mitigation

| Risk                                                                                                | Mitigation                                                                                                                                          |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Energy Harvesting Circuit is<br>insufficient/exceeds the power<br>requirements of the whole device. | <ul> <li>Include/remove more generation devices in the circuitry.</li> <li>Introduce a gear ratio for the hand generator.</li> </ul>                |  |  |  |  |  |  |
| Energy harvesting devices exceed 5V output.                                                         | <ul> <li>Introduce a zener diode to sink<br/>damaging voltages.</li> <li>Include a regulator before the energy<br/>harvester controller.</li> </ul> |  |  |  |  |  |  |
| Software memory requirements exceed the MCU onboard memory available.                               | <ul><li>Utilize SD card memory storage</li><li>Reduce the software complexity</li></ul>                                                             |  |  |  |  |  |  |

# Hardware/Software Technology Platforms

- Software
  - Code Composer Studio
  - CLion



• KiCAD





# **Energy Harvesting Testing**

Crank Generator

- Tests to confirm that the crank generator can deliver power to the system without damaging it.
- Verify voltage values do not exceed limits at output node
- Confirm capacitor can be charged by circuit
- Note: all tests were done with rectification circuit

Energy Harvesting Buttons

- Tests to confirm that power can be collected from these buttons and also detect a GPIO signal from them.
- Verify GPIO pins receive correct "high" value when buttons are pressed
- Confirm capacitor can be reasonably charged from button pressing
- Note: all tests were done with rectification circuit

# Hardware Testing

Signal Detecting Circuit

- Measures the voltage at the output of all power generating components
- Uses the microprocessor's ADC converter to read the voltage output of the crank generator

#### E-Ink Display

- Determine the amount of energy needed for to load an image onto the display
- Determine the maximum frame rate we can achieve with a fully charged supercapacitor
- Measure the power usage when updating a different percentage of the display pixels

# Software Testing

#### **Communication & Interfacing**

- Display Communication
  - Ensure interface correctly communicates display information for the GUI
- User Input Detection
  - Ensure user inputs are correctly deciphered
- Multiplayer Communication
  - Ensure correct game state communication between devices.
- Power loss
  - Ensure state save captures required information for restoration.
  - Ensure the correct state is restored.

#### **Gameplay Testing**

- Room Generation
  - Ensure each room and button prompts render correctly with all of their components and check components positions.
- Environment Generation
  - Test and confirm each input combination for the room selection UI.
  - Test for paths from the start room to the end.
- Room Challenges
  - Test success/failure state for each room and check if players are updated.

# **Interface Testing**

Power Production/Usage

- Power to Capacitor
  - Confirm energy harvesters increase voltage on supercapacitor
- Power to System
  - Confirm 3.3V to system over full range of supercapacitor

#### **User Interaction**

- E-Ink SPI
  - Confirm microcontroller can update E-ink
- E-ink Powering
  - Validate that energy harvesting system can produce enough energy to update E-ink
- Multiplayer Functionality
  - Validate multiplayer communication between microcontrollers

## **Test Results**

| Results                                                                                           |                 |                    |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------|--------------------|---------|--|--|--|--|--|--|
| Max DC voltage on capacitor after long time turning with drill                                    |                 |                    |         |  |  |  |  |  |  |
| 6.7                                                                                               |                 |                    |         |  |  |  |  |  |  |
|                                                                                                   |                 |                    | _       |  |  |  |  |  |  |
| Average Power(mW)                                                                                 |                 |                    |         |  |  |  |  |  |  |
| 10.624815                                                                                         |                 |                    |         |  |  |  |  |  |  |
| Can Easily introduce a gear ratio and get much higher power output since it is dependent upon rpm |                 |                    |         |  |  |  |  |  |  |
| Time to produce enough energy to update E-ink once (based off of datasheet)                       |                 |                    |         |  |  |  |  |  |  |
| Average Power (Hand Crank)                                                                        | Energy to updat | te E-ink once (mJ) | Seconds |  |  |  |  |  |  |
| 10.624815                                                                                         | 52.8 4.96949829 |                    |         |  |  |  |  |  |  |
| Crank Generator                                                                                   |                 |                    |         |  |  |  |  |  |  |

| Results                   |                                      |                   |
|---------------------------|--------------------------------------|-------------------|
| Max DC voltage on capac   | itor after long time pressing        |                   |
| 4.8V                      |                                      |                   |
| Average Power(mW)         |                                      |                   |
| 1.056121567               |                                      |                   |
| No Clear increase or deci | rease of power output when capacita  | nce increases     |
| Time to produce enough    | energy to update E-ink once (based o | off of datasheet) |
| Average Power (Hand C E   | Energy to update E-ink once (mJ)     | Seconds           |
| 1.056121567               | 52.8                                 | 49.99424467       |
|                           |                                      | 27                |

**Energy Harvesting Button** 

Note: We will increase power production using a gear ratio which further proves the feasibility of this design.

### **Project Status**

- This semester we have performed research and feasibility designs into creating a batteryless handheld game.
- So far we have:
  - Developed the idea of our game
  - Selected and purchased several of our components
  - Completed some unit tests
  - Created several diagrams and schematics for use in the next semester with the initial prototype.
- We have taken steps to prepare ourselves for actual implementation and design of our project so we can get to work immediately in the Fall.

# Task Responsibilities and Contributions

#### • John Brose

- Chief Engineer- Power Systems
- Meeting Facilitator
- Jake Larimore
  - Chief Engineer- Integration
- Franklin Bates
  - Chief Engineer- Microcontroller
  - Meeting Scribe
- Daniel Lamar
  - Test Engineer
  - Report Manager
- Shivam Vashi
  - Chief Engineer- Software

### **Future Plans**

- Begin large scale integration
- Complete testing on integrated components i.e. energy harvesting system
- Begin software testing i.e. GUI, room generation, multiplayer functionality
- Design PCB, casing, and the layout of the device components
- Debug prototype and finalize the project design.

# Any Questions?

## Energy Harvesting - Buttons



# **Energy Harvesting Testing**

- 1. Energy Harvesting Button & Rectification
  - a. Set up an energy harvesting button into a full-wave diode rectifier.
  - b. Connect the output of the rectifier to a capacitor (C).
  - c. Start at zero volts on the capacitor and push the button as fast as possible for x amount of time.
  - d. Measure the final voltage (V) on the capacitor after time has stopped.
  - e. Obtain the energy produced using E=0.5CV2 and the resulting average power using P=Etime.
  - f. Perform steps a through e for multiple trials using various capacitance values and amount of time to obtain a set of power produced.
  - g. Average the set of power produced from each trial to obtain a final average power for the energy harvesting button.

- 1. Crank Generator & Rectification
  - a. Setup crank generator in a circuit with full-wave 3-phase rectification
  - b. Connect capacitor to output of rectifier
  - c. Have a user crank generator at different RPM rates including smallest, average, and maximum RPM.
  - d. With an initial state of zero volts on the capacitor, crank generator at different speeds for x amount of time.
  - e. Measure the final voltage (V) on the capacitor when the time limit is reached.
  - f. Obtain the energy produced using E=0.5CV2and the resulting average power using P=Etime.
  - g. Repeat steps a through f using different speeds as well as different users to obtain a set of power outputs.
  - h. Average the set of power produced from each trial to obtain a final average power for the crank generator.