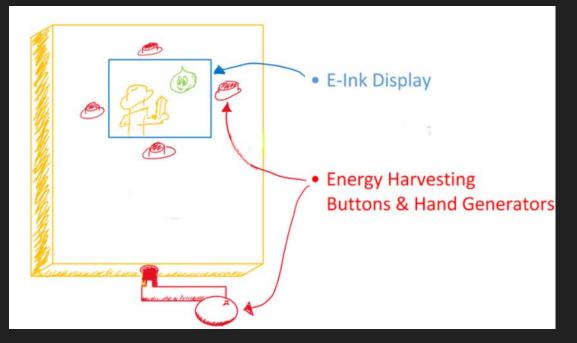
Battery-Free Handheld Game

Group 18 (sddec21-18): John Brose, Jake Larimore, Franklin Bates, Daniel Lamar, Shivam Vashi

Advisor/Client: Henry Duwe

Problem Statement

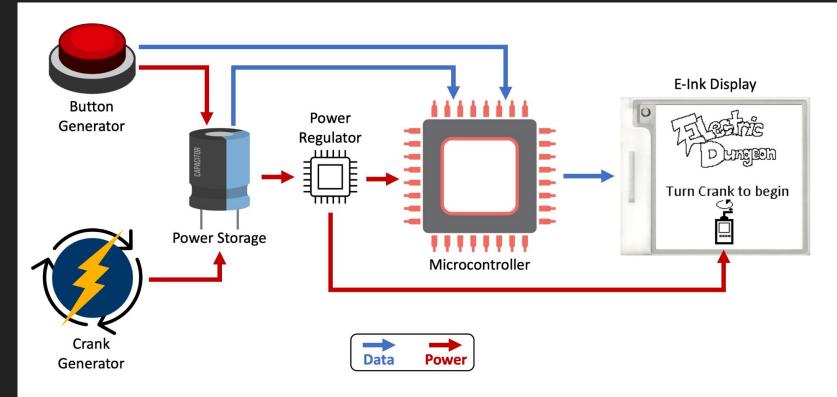
- Batteries have problems:
 - Limited storage
 - Need to be recharged or disposed of
 - Large devices
- Goal: create a battery free gaming device
 - Fun proof of concept
 - Show capabilities of a battery free system
 - Further knowledge in energy harvesting devices


Market Survey

- Battery-Free Game Boy
 - Northwestern University and the Delft University of Technology (TU Delft) September 2020
 - Battery-Free
 - Uses solar panels and kinetic button harvesters
- What Makes Ours Unique
 - Soley uses human input to generate power
 - Incorporates energy harvesting into gameplay interaction

Concept & Functional Requirements

- Handheld batteryless gaming device
- Powered through human interaction
- No need to have charging accessories/batteries
- Multiplayer capabilities
- Fun gameplay that creatively incorporates energy harvesting

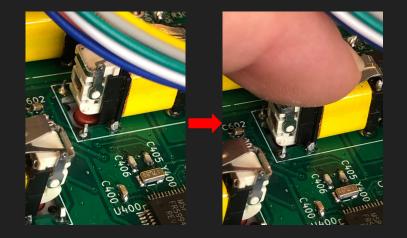

Constraints

- The device must be successfully designed and built within 26 weeks.
- The device must be produced at a reasonable cost of around \$100
- The operating environment must be acceptable to the integrated hardware.
- The device must be unique from any other battery-free gaming devices available.

Resources & Cost

Part	Pr	ice	Qty	Pr	ice for Qty
MSP430FR5994	\$	9.79	1	\$	9.79
Power Buttons	\$	11.15	4	\$	44.60
E-ink Display	\$	19.50	1	\$	19.50
Hand Crank	\$	9.99	1	\$	9.99
PCB	\$	8.00	1	\$	8.00
Other	\$	35.23		\$	35.23
			Total:	\$	127.11

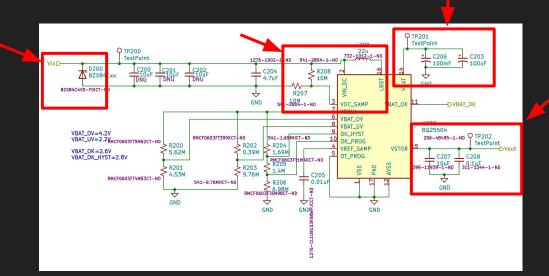
Functional Diagram



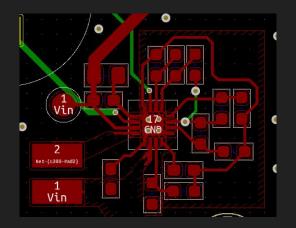
Power Generation

Mini Motor Generator

- Full-wave 3-phase rectification
- 1 to 3 Gear ratio to optimize output

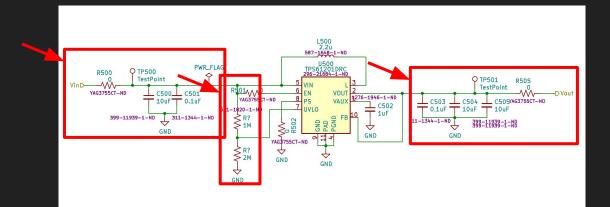


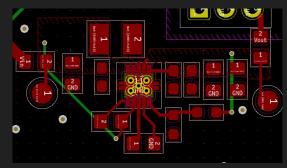
Kinetic Button Harvester


- Full-wave rectification
- GPIO input support

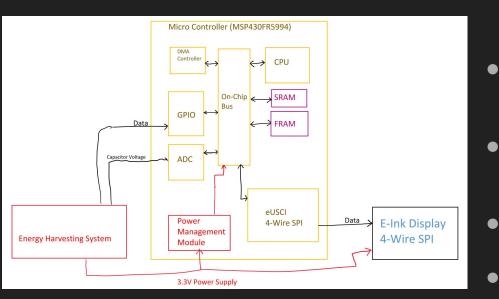
Power Storage

- BQ25504 boost converter/charger
- Input limit
- Boost converter
- Energy storage
- Output 2.2V-4.2V





Power Regulation


- TPS61201 Boost Converter
- Input 2.52V-5.5V
- Under Voltage Lockout
- 3.3V fixed output

Microcontroller (MSP430FR) - Peripherals

• Low Power Modes

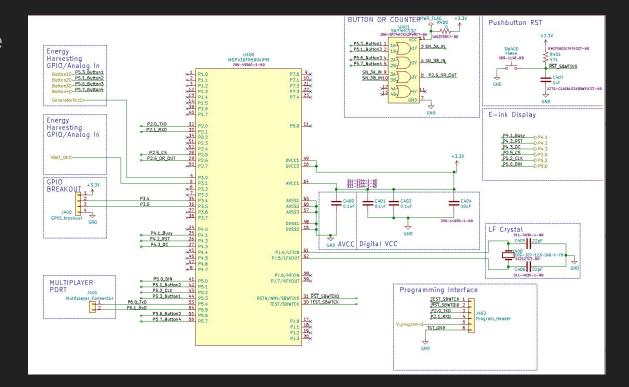
- Disabling components when not in use
- Interrupt triggered state changes

ADC

- Monitor voltage on super capacitor
- Interrupt for ctpl shutdown

FRAM Utilities

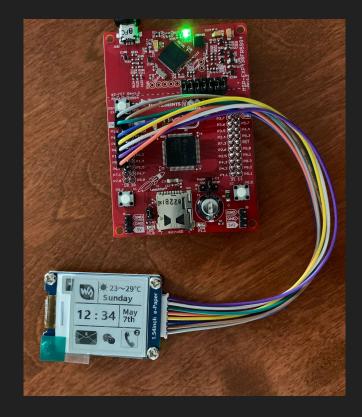
- Storage for game state
- DMA CPU-less memory R/W


• Timers

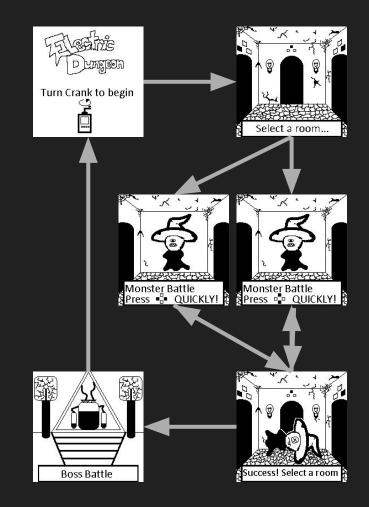
- \circ HW timer interrupt for delays
- GPIO
 - Buttons

Microcontroller (MSP430FR)

- Integrate onto PCB
- Programming Interface
- Risk Mitigation



E-ink Display

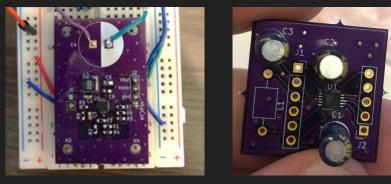

• Interface

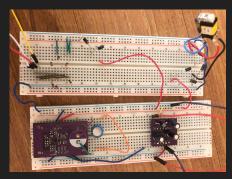
- 4-wire SPI
- Implementation Libraries from WaveShare Inc.
- Hand-drawn static images
 - Stored in FRAM as 5-kilobit C-arrays
 - Limited to 50 kilobits total for image storage
- Configuration nuances for Low Power
 - Largest current consumption module
 - Reset signal active high
 - Screen clearing

Software Game Implementation

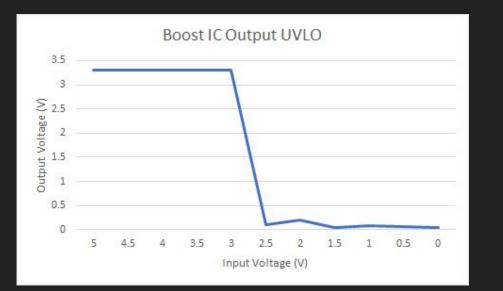
- Synchronous Software Development
 - Modular in order to accommodate easy conditional changes to gameplay
 - Design based around making refactor time as short as possible
- Compute through power loss API
 - Used to save initialization settings for all programed modules of the MCU
 - \circ Faster start up after brown out
- State Change Progression
 - main() function simply manages game state and associated function calls
 - Interrupt Service Routines (ISR) used with low power modes when waiting for user input

Final PCB


- Consolidated all block into single system
 - Power production
 - \circ Power storage
 - Boost Regulator
 - Integrated uC
 - E-ink Display
 - Software
- Testing
 - Zero Ohm Resistors
 - Test Points

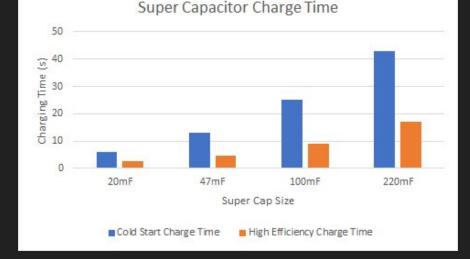

Hardware Testing

- Unit Testing
 - Breakout boards
 - Ensure functionality via lab equipment
- Integration Testing
 - Power production to power storage
 - Power storage to power regulation
- System Testing
 - Entire gameplay loop


Unit Testing

Integration Testing

Unit Testing - Boost IC


- Boost UVLO at 2.52V
- Test Setup
 - Boost Breakout Board
 - Lab Voltmeter and Power Supply

• Expectation:

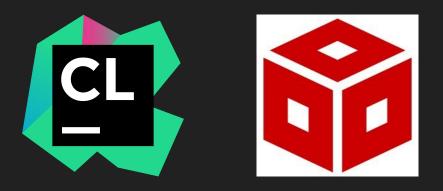
 Output remains @ 3.3V until input drops below 2.52V

Unit Testing - Super Capacitor

- Charging & Discharging Timing
- Cold Start vs High Efficiency State
- Test Setup:
 - Power IC Breakout Board
 - Use Crank Crank to generate power
 - Use voltmeter to measure output
- # E-ink Full Refreshes
 - 220mF: ~10
 - 100mF: ~5
 - 47mF: 2-3

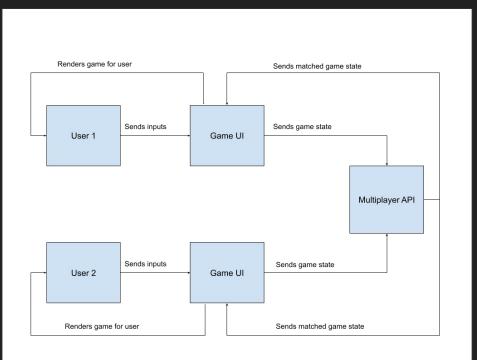


Risks & Mitigation


Risk	Mitigation						
Certain modules on the final PCB do not function as expected	 Add zero Ohms in critical places Add testpoint for easy debugging 						
Final PCB does not function	 Breakout modules of each major piece If necessary breadboard breakout modules together to obtain a functioning design 						
Software memory requirements exceed the MCU onboard memory available.	Utilize SD card memory storageReduce the software complexity						

Hardware/Software Technology Platforms

- Software
 - Code Composer Studio
 - CLion

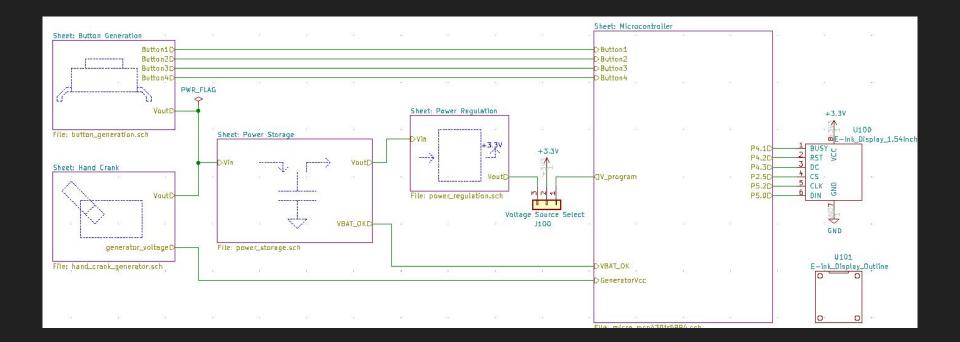


• KiCAD

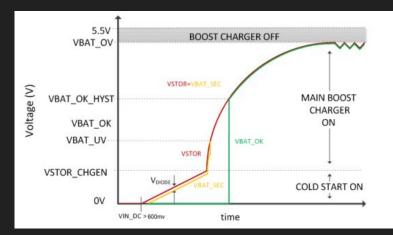
Future Implementations

- Multiplayer Functionality
- Utilize 2nd FRAM module
 - Additional Screens
 - High Address Space
- Implement Partial Refresh
- Increase Game Complexity
- Better Handling of Coldstart on BQ25504
- Coverage testing

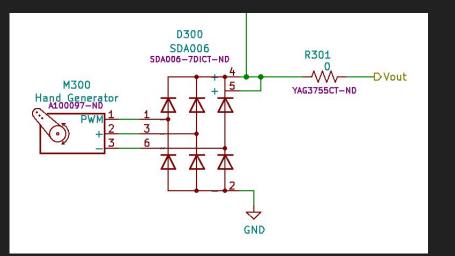
Task Responsibilities and Contributions

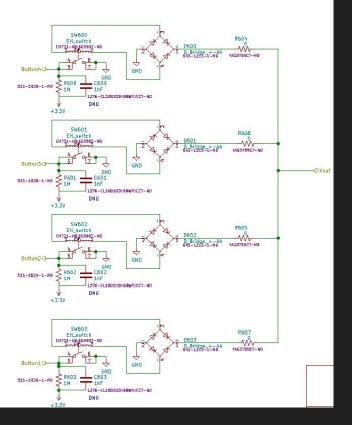

- John Brose
 - Chief Engineer- Power Systems
 - Meeting Facilitator
- Jake Larimore
 - Chief Engineer- Integration
- Franklin Bates
 - Chief Engineer- Microcontroller
 - Meeting Scribe
- Daniel Lamar
 - Test Engineer
 - Report Manager
- Shivam Vashi
 - Chief Engineer- Software

Final Product - It works!


Any Questions?

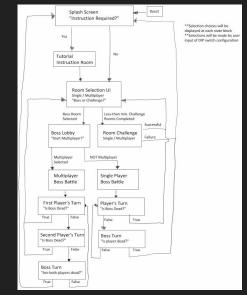
Top Level Schematic

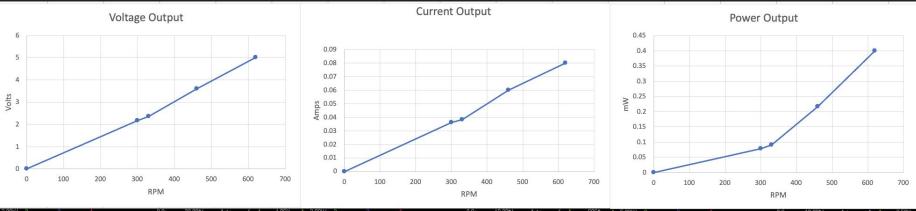


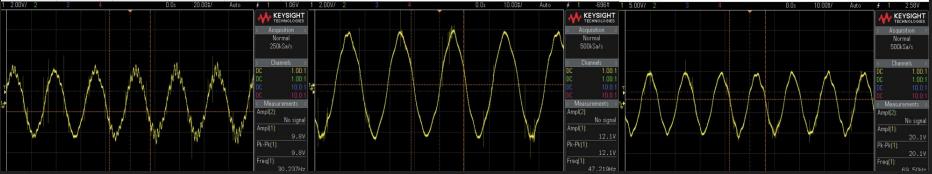

BQ25504 - Coldstart

- Clamped to 600mV during coldstart
- Use PFet on output of module that is controlled by vbat_ok which would attach the load after cold

Hand Crank and Button Schematics




First Semester Recap


- Tested power output of the generator at varying RPMs and verified
- Designed preliminary power storage and regulation system
- Compared power output of energy devices to power requirements of E-ink/Microcontroller to prove feasibility
- Developed the concepts and framework for the gameplay progression

Generator Testing

Button Testing

Trial Number	Capacitance(uF)	Initial Voltage(mV)	Final Voltage(V	Time(s)	Energy(mJ)	Power(mW)
1	2000	10	2.52	5	6.3001	1.26002
2	2000	20	3.8	10	14.2884	1.42884
3	2000	20	4.06	20	16.3216	0.81608
4	4000	10	1.65	5	5.3792	1.07584
5	4000	5	2.47	10	12.15245	1.215245
6	4000	10	3.51	20	24.5	1.225
7	4000	2	1.46	5	4.251528	0.8503056
8	4000	2	2.28	10	10.378568	1.0378568
9	4000	2	3.07	20	18.825248	0.9412624
10	6000	12	1.15	5	3.885132	0.7770264
11	6000	10	1.88	10	10.4907	1.04907
12	6000	2	2.58	20	19.938252	0.9969126

Power Storage Design (BQ25504)

A	В	С	D	E	F G	Н	1	J	K	L	М	N	0	Р	Q	R	S T	U	V	W	Х
User Input	VBIAS	1.25	/																		
2 Fixed																					
1	Comparator threshold for VSTOR maximum. Typically the max storage element voltage, e.g. 4.2V for Lilon battery					Comparator threshold voltages indicating when VSTOR has risen above VBAT_OK_HYS or fallen below VBAT_OK				Ту	Comparator threshold for VSTOR minimum. Typically the min storage element voltage, e.g. 2.5V for Lilon battery					Maximum power point threshold, e.g. ~0.7-0.8 of solar panel's open circuit voltage					
5	2.5V	< VBAT	$OV \le 5$	5.25V		VBAT_OV > VBAT_OK_HYST > VBAT_UV						2.2V < VBAT_UV < VBAT_OV					MPPT				
Desired						RSUM ¹	11	Mohm									RSUM¹	20	Mohm		
B Desired	RSUM ¹	10	Nohm			VBAT_OK	2.3	v	> VBAT_U	V	RS	SUM1	10 N	1ohm			VIN_DC(OC)	1	v	Open Circ	uit Volts
Desired	VBAT_OV	5	/			VBAT_OK_HYST	2.5	v	>VBAT_C	K	VE	BAT_UV	2.258 V	e			VREF_SAMP	0.8	v	MPP volta	age
0							- 1			3 5											Q
1							-	closest 1%	% resistor ¹					15					closest 1	% resistor ¹	
2		с	losest 1%	resistor ¹			Exact	<	>				c	osest 1%	resistor1			Exact	<	>	
3 Computed		Exact	<	>		ROK1	5.500	5.490	5.620	Mohm	1		Exact	<	>		ROC1	6.000	5.900	6.040	Mohm
4 Computed	ROV1	3.750	3.740	3.830	Mohm	ROK2	4.620	4.530	4.640	Mohm	RL	JV1	5.536	5.490	5.620	Mohm	+10MEG ²	10.000	10.000	10.000	Mohm
5 Computed	ROV2	6.250	6.190	6.340	Mohm	ROK3	0.880	0.866	0.887	Mohm	RL	JV2	4.464	4.420	4.530	Mohm	ROC2	4.000	3.920	4.020	Mohm
6 Computed	VBAT_OV	<u> </u>	4.978	4.979	V	VBAT_OK	\rightarrow	2.281	2.282	V	VE	BAT_UV	>	2.256	2.258	V	+10MEG ²	0.000	0.000	0.000	Mohm
7 Computed						VBAT_OK_HYST	\rightarrow	2.479	2.479	V							VREF SAMP	>	0.802	0.800	V
8																					
9 Selected	ROV1	4.53 N			-	ROK1		Mohm		a		JV1	5.62 N				ROC1		Mohm		(s
0 Selected	ROV2	5.62 N	Nohm		_	ROK2		Mohm			RU	JV2	4.53 N	1ohm			+10MEG ²		Mohm		a
1 Selected						ROK3	1	Mohm									ROC2		Mohm		
2		V					V			I			V				+10MEG ²	1000	Mohm		
3 Typ voltage	VBAT_OV(typ)	4.201	/	-19.01	% diff	VBAT_OK (typ)	2.258			% diff	VE	BAT_UV(typ)	2.258 V		-0.02	% diff		\checkmark	n 20		
4 Typ voltage						VBAT_OK_HYST (typ)	2.480	V	-0.81	% diff							VREF_SAMP	0.800	V	-0.05	% diff